Skip to content Skip to sidebar Skip to footer
Rumus luas lingkaran

Rumus luas lingkaran


Berikut kita ambil dari wikipedia dimana Luas lingkaran memiliki rumus
A = \pi R^2 \!
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dA = rd\theta\ dr
dalam koordinat polar, yaitu
\int dA = \int_{r=0}^R \int_{\theta=0}^{2\pi} rd\theta\ dr
= \int_{r=0}^R rdr \int_{\theta=0}^{2\pi} d\theta 
= \frac 1 2 (R^2-0^2) \ (2\pi-0) = \pi R^2 \!
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam R_1\! dan jari-jari luar R_2\!.

Penjumlahan elemen juring

Area of a circle.svg
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.

Luas juring

Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;
A(R,\theta) = \frac 1 2 R^2 \theta \!
dengan batasan nilai θ adalah antara 0 dan . Saat θ bernilai , juring yang dihitung adalah juring terluas, atau luas lingkaran.

Luas cincin lingkaran

Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam R_1\! dan jari-jari luar R_2\!, yaitu
A_{cincin} = \pi (R_2^2 - R_1^2) \!
di mana untuk R_1 = 0\! rumus ini kembali menjadi rumus luas lingkaran.

Luas potongan cincin lingkaran

Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
A_{potongan\ cincin} = \frac \pi 2 (R_2^2 - R_1^2) \theta \!
yang merupakan luas sebuah cincin tak utuh.
Open Comments